Abstract

Using a visible beam to probe the thermal effect induced by infrared absorption, mid-infrared photothermal (MIP) microscopy allows bond-selective chemical imaging at submicron spatial resolution. Current MIP microscopes cannot reach the high wavenumber region due to the limited tunability of the existing quantum cascade laser source. We extend the spectral range of MIP microscopy by difference frequency generation (DFG) from two chirped femtosecond pulses. Flexible wavelength tuning in both C-D and C-H regions was achieved with mid-infrared power up to 22.1 mW and spectral width of 29.3 cm-1. Distribution of fatty acid in live human lung cancer cells was revealed by MIP imaging of the C-D bond at 2192 cm-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call