Abstract

This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

Highlights

  • With the irresistible rise of graphene, great attention has been paid by the scientific community to the spectacular properties of this carbon monolayer, the “Nobel prized” new carbon allotrope which ‒ a decade after its discovery in 2004 [1]—still promises innovative technological solutions for many issues in physics and nanotechnology, but clearly, the real breakthrough discovery initiating the golden-age of graphene is still missing [2]

  • We describe in the following the phase transitions induced by the bondonic propagators till the 4th order in Group-IV elemental defective nanoribbons

  • We will progress on the investigations of SW defects in graphene and related layers, as silicene germanene, and stannene, by analyzing the propagation in the hexagonal nanoribbons of the 5|7 pairs according to the wave-like topological mechanism originally introduced in [31] and called

Read more

Summary

Introduction

With the irresistible rise of graphene, great attention has been paid by the scientific community to the spectacular properties of this carbon monolayer, the “Nobel prized” new carbon allotrope which ‒ a decade after its discovery in 2004 [1]—still promises innovative technological solutions for many issues in physics and nanotechnology, but clearly, the real breakthrough discovery initiating the golden-age of graphene is still missing [2]. Ten years of investigations on graphenic honeycomb lattices point out the scientific relevance of monolayer materials like hexagonal BN, MoS2 and others, whose 2D crystals present a rich diversity of physico-chemical properties that can be further specialized by combining variable stacks of heterostructures (often called van der Waals heterostructures due to the presence of van der Waals-like forces gluing the layers together [4] as in normal graphite crystals) with applications, for example, in vertical tunneling transistors [5]. Future experimental and theoretical works will assess the general validity of the reported theoretical conclusions, allowing a deeper description of the bondonic chemistry of Group-IV elements at the nanoscale

Structure and Topology of Honeycomb Nanoribbons
The Computational Method
X Bond β2
Topological Wiener Polynomials
Topo-Reactivity Wiener Polynomials
Bondonic Effects on Topological Defects in Group IV-Honeycomb Nanoribbons
Conclusions
49. Physical Units’ Transformations
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call