Abstract

The abilities of the (HPO3)2– and (SeO3)2– anions as structure building units and as spin exchange paths between magnetic ions were investigated by preparing and analyzing the isostructural Fe2(SeO3)3 and Fe2(HPO3)3. In both compounds, the face-sharing Fe2O9 dimers are interconnected into chains by the (HPO3)2– and (SeO3)2– anions. The (HPO3)2– is the structural counterpart of the Se electron lone pair of (SeO3)2– due to the weak hydride character of the terminal hydrogen. However, they differ considerably as spin exchange paths between magnetic cations. Both compounds exhibit an effective magnetic dimer behavior, unexpectedly arising from the interdimer Fe—O···O—Fe exchange along the chain, but weaker in Fe2(HPO3)3 by a factor of ∼3. It is consistent with the general tendencies of the phosphite anions to act as a weak magnetic mediator, which is caused by the through-bond effect of the P3+ ion in the Fe—O···P3+···O—Fe exchange path, much weaker than in the selenite phase in absence of P3+d contribution. Reasons for stronger exchanges through phosphates or sulfates are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.