Abstract

Alloying effects of Nickel and Bismuth in SAC solder to achieve mechanical and microstructural evolution were investigated by comparing three different chemical composition of solders. Sn-3.0Ag-0.5Cu (SAC305) is the most commonly used for Pb-free solder and solder balls are based on Sn-Ag-Cu alloy composition. Compositions of solder balls were Sn-3.0Ag-0.5Cu (SAC305), Sn-1.2Ag-0.5Cu-0.05Ni (SAC1205N) and Sn-Ag-Cu-Ni-Bi based solder (SACNB). Organic solderability preservative (OSP) surface finished substrate, ball grid array (BGA) package arranged by 300 ㎛ diameter solder ball and Type 4 solder paste were used. Solder ball shear test of the BGA package was conducted before the reflow soldering. Board level package bonding process was carried out by hot air reflow soldering. Void content of the BGA solder joint was investigated after soldering. The microstructure evolution before and after thermal cycle test (TCT) was observed using scanning eletron microscopy (SEM) and energy dispersive spectroscopy (EDS). After TCT, intermetallic compound (IMC) refinement and solid solution strengthening effects of Bi element addition were observed in the solder matrix, and also any segregation of Bi element was not founded. Based on these result, it was found that the solder joint reliability of the middle and low temperature solder joints was improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call