Abstract

This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55°C). Surfaces were left untreated or pretreated by mechanical roughening, Al2O3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55°C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n=16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2-tests (p<0.05). SBS (MPa) of the self-adhesive composites on enamel and dentin were significantly lower (enamel: < 5, dentin: < 3) than those of the conventional flowable composite (enamel: 13.0±5.1, dentin: 11.2±6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call