Abstract

Automated fiber placement (AFP) is a method to manufacture complex composite parts in an automatable and scalable process. Thermoplastic in situ AFP has received more attention in recent years for its use in high-performance, aerospace applications that use low-melting polyaryletherketone (LM-PAEK) composites. Although in situ AFP is a promising technology for the automated and economical manufacturing of composites, the production of a mold is still a considerable expense. Using large-scale additive manufacturing, molds can be manufactured in a short time frame for a fraction of the cost of traditional molds. By using polyamide 6 (PA6), a polymer incompatible with LM-PAEK, a bond can be created, which holds a laminate in the desired form during production and allows for demolding. Due to the thermoplastic nature of PA6, a mold can be manufactured using large-scale, extrusion-based additive manufacturing. This study investigates the suitability of 3D-printed molds composed of PA6 for the AFP of CF/LM-PAEK laminates. To this end, peel tests and shear tests were conducted to investigate the influence of the process temperature, the area of heating and the consolidation pressure on the bond of these incompatible polymers. A shear strength of up to 2.83 MPa and a peel strength of up to 0.173 N·mm−1 were achievable. The principal suitability of PA6 as a mold material for the AFP of CF/LM-PAEK was demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call