Abstract

The intrinsic activity and durability of oxygen evolution reaction (OER) electrocatalysts are mainly dominated by the surface and interface properties of active materials. Herein, a core-shell heterogeneous structure (NF/NiSe@Fe2O3) is fabricated via two-step hydrothermal method, which exhibits a low overpotential of 220 mV (or 282 mV) at 10 mA/cm2 (or 200 mA/cm2), a small Tafel slope of 36.9 mV/dec, and long-term stability (~230 h) in 1 mol/L KOH for OER. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy reveal the (oxy)hydroxide-rich surface and strong coupling interface between NiSe and Fe2O3 via the Fe-Se bond. Density functional theory calculation suggests that the d-band center and electronic state of NiSe@Fe2O3 heterojunction are well optimized due to the formation of Fe-Se bond, which is favorable for the enhanced OER activity because of the easy adsorption of oxygen-containing intermediates and desorption of O2 in the OER process. In addition, the unique core-shell structure and robust bonding interface are responsible for the good stability for OER. This work provides fundamental insights on the bonding effect that determine the performance of OER electrocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.