Abstract

The bonding behavior was determined for hydrophobically modified alkaline-treated gelatin on wet porcine intestinal surfaces. The modified gelatin films were obtained by reacting the amino groups of alkaline-treated gelatin with fatty acid chlorides of different alkyl chain lengths, namely, hexanoyl (Hx: C6) chloride, decanoyl (Dec: C10) chloride, and stearoyl (Ste: C18) chloride. Three kinds of the films were prepared, 32HxAlGltn, 24DecAlGltn, and 26SteAlGltn that had substitution ratios of hydrophobic groups to the amino groups of 32HxAlGltn, 24DecAlGltn, and 26SteAlGltn of 32%, 24%, and 26%, respectively. The 32HxAlGltn film had the strongest bonding to porcine intestinal surfaces. A thick 32HxAlGltn film remained on the intestinal surface even after the bonded film was scraped off for the measurement of bonding strength. In addition, the burst strength increased with an increase in the substitution ratio of the Hx group. Thus, the HxAlGltn film with the higher Hx modification ratio has a potential as a sealant material to prevent agglutination of intestinal surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.