Abstract

Structure and properties of silicon-silicon doubly bonded compounds (disilenes) are shown to be remarkably different from those of alkenes. X-Ray structural analysis of a series of acyclic tetrakis(trialkylsilyl)disilenes has shown that the geometry of these disilenes is quite flexible, and planar, twist or trans-bent depending on the bulkiness and shape of the trialkylsilyl substituents. Thermal and photochemical interconversion between a cyclotetrasilene and the corresponding bicyclo[1.1.0]tetrasilane occurs via either 1,2-silyl migration or a concerted electrocyclic reaction depending on the ring substituents without intermediacy of the corresponding tetrasila-1,3-diene. Theoretical and spectroscopic studies of a stable spiropentasiladiene have revealed a unique feature of the spiroconjugation in this system. Starting with a stable dialkylsilylene, a number of elaborated disilenes including trisilaallene and its germanium congeners are synthesized. Unlike carbon allenes, the trisilaallene has remarkably bent and fluxional geometry, suggesting the importance of the π-σ* orbital mixing. 14-Electron three-coordinate disilene-palladium complexes are found to have much stronger π-complex character than related 16-electron tetracoordinate complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.