Abstract

Using high-level MRCI and CCSD(T) quantum chemical calculations, we report structures, energetics, and other properties of the sulfur fluoromonochloride family (SF(n-1)Cl, n = 1-6). Our group previously studied the sulfur fluoride family (SF(n), n = 1-6) and found that several of the excited states of SF and SF(2) as well as the ground states of SF(3)-SF(6) exhibited a new type of bonding, called recoupled pair bonding. Comparing the SF(n-1)Cl and SF(n) species allows us to study isomerism, apicophilicities, and substituent effects due to the Cl substitution. The primary findings of this work are twofold. First, replacing F with Cl weakens the adjacent S-F bonds by destabilizing the molecule with respect to the pure SF(n) analog. Second, an isomer with a singly occupied S-Cl antibonding orbital is more stable than the analogous isomer with a singly occupied S-F antibonding orbital, thus explaining apicophilicities. This work has also allowed us to further refine and expand our understanding of the nature of the recoupled pair bond model. Finally, we discovered the presence of bond-stretch isomers in the first excited ((3)A'') state of SFCl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call