Abstract

The optimization of CFC/Cu-interfaces for plasma facing divertor components in thermo-nuclear fusion reactors is proposed and demonstrated via an integrative numerical-experimental approach mainly comprising a macro-scale to micro-scale finite element modeling technique together with fracture mechanics tests. Results obtained by finite element analyses of real-scale CFC flat tile divertor components under high heat flux loading conditions are verified by the findings of tests in an ion beam high heat flux facility. From the macro-scale FE models of the full component the loading conditions are derived for micro-scale FE models that incorporate principal details of the micro-structured CFC/Cu-interface thus allowing to capture explicitly locally acting dissipative mechanisms which in turn at the macro-scale in fracture mechanics experiments increase the fracture toughness of the CFC/Cu-interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.