Abstract

The xenon-fluoride bond dissociation energy in XeF3- has been measured by using energy-resolved collision-induced dissociation studies of the ion. The measured value, 0.84 +/- 0.06 eV, is higher than that predicted by electrostatic and three-center, four-electron bonding models. The bonding in XeF3- is qualitatively described by using molecular orbital approaches, using either a diradical approach or orbital interaction models. Two low-energy singlet structures are identified for XeF3-, consisting of Y- and T-shaped geometries, and there is a higher energy D3h triplet state. Electronic structure calculations predict the Y geometry to be the lowest energy structure, which can rearrange by pseudorotation through the T geometry. Orbital correlation diagrams indicate that that ion dissociates by first rearranging to the T structure before losing fluoride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.