Abstract

A nonlinear parallel-bonded stress corrosion (NPSC) model is proposed to simulate the fatigue characteristics of artificial rock (concrete) during cyclic loading. Numerical simulations of fatigue tests replicate the main mechanical features of concrete specimens subjected to cyclic loading observed in the laboratory. A nonlinear reduction speed of the bond diameter between two bonded particles represents the damage rate induced by the fatigue load. The damage rate is proportional to the maximum cyclic load level when the minimum cyclic load level is fixed. Compared with laboratory data, a logarithmic function of bond diameter in the NPSC model resulted in the best fit to simulate the fatigue behaviour of concrete. The simulation includes acoustic emission (AE) monitoring during fatigue tests. The axial strain of the assembly is governed by the evolution of bond breakages. The sum of released bond strain energy is documented as value proportional to cumulative AE energy. The simulation results show very similar evolution compared with laboratory data, which verifies the effectiveness of AE energy simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.