Abstract
The concept of atom-based quadratic indices is extended to a series of molecular descriptors (MDs) (both total and local) based on adjacency between edges. The kth edge-adjacency matrix (E ( k )) denotes the matrix of bond-based quadratic indices (non-stochastic) with respect to the canonical basis set. The kth "stochastic" edge-adjacency matrix, ES ( k ), is here proposed as a new molecular representation easily calculated from E ( k ). Then, the kth stochastic bond-based quadratic indices are calculated using ES ( k ) as operators of quadratic transformations. The study of six representative physicochemical properties of octane isomers was used to compare the ability of both series of MDs to produce significant quantitative structure-property relationship (QSPR) models. Moreover, the general performance of the new MDs in this QSPR study has been evaluated with respect to other 2D/3D well-known sets of indices and the obtained results shown a quite satisfactory behavior of the present method. The novel bond-level MDs were also used for the description and prediction of the boiling point of 28 alkyl-alcohols and to the modeling of the specific rate constant (log k) of 34 derivatives of 2-furylethylenes. These models were statistically significant and showed very good stability to data variation in leave-one-out (LOO) cross-validation experiment. The comparison with other approaches (edge- and vertices-based connectivity indices, total and local spectral moments, and quantum chemical descriptors as well as E-state/biomolecular encounter parameters) expose a good behavior of our method in this QSPR studies. The approach described in this report appears to be a very promising structural invariant, useful for QSPR/QSAR studies, similarity/diversity analysis, and computer-aided "rational" molecular (drug) design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.