Abstract

Recently, the tensor network description with bond weights on its edges has been proposed as a novel improvement for the tensor renormalization group algorithm. The bond weight is controlled by a single hyperparameter, whose optimal value is estimated in the original work via the numerical computation of the two-dimensional critical Ising model. We develop this bond-weighted tensor renormalization group algorithm to make it applicable to the fermionic system, benchmarking with the two-dimensional massless Wilson fermion. We show that the accuracy with the fixed bond dimension is improved also in the fermionic system and provide numerical evidence that the optimal choice of the hyperparameter is not affected by whether the system is bosonic or fermionic. In addition, by monitoring the singular value spectrum, we find that the scale-invariant structure of the renormalized Grassmann tensor is successfully kept by the bond-weighting technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.