Abstract

Torsion potentials about the X−ẌH bond in homosubstituted primary carbenes (X = C) and silylenes (X = Si) have been investigated at the multireference averaged coupled pair functional (MRACPF) level of theory. For the triplet species, the potentials are quite flat, but large barriers of torsion have been observed for the singlet states of all carbenes and silylenes whose carbon or silicon atom adjacent to the divalent atom formes small bond angles with two of its further substitutents; other geometry parameters, even the bond angle at the divalent atom, proved to be of little or no importance. The said kind of deformation encourages the formation of a weak dative π-like bond between the two X atoms, which by its 2-fold symmetry with respect to torsion about the bond axis is responsible for the observed two-minima torsion potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.