Abstract

To establish the fracture toughness (K1C ) and flexural bond strength of commercially available denture teeth to heat cured, CAD/CAM and 3D printed denture-based resins (DBRs). Three types of DBRs (Heat cure, CAD-milled and 3D printed) and four different types of commercial denture teeth (Unfilled PMMA, double cross-linked PMMA, PMMA with nanofillers and 3D printed resin teeth) were investigated. DBR and epoxy embedded denture teeth (n = 30 per group) specimen beams (25 × 4 × 3 mm) were fabricated. The testing ends of all the specimens were surface treated, bonded and processed according to manufacturer's instructions. Twenty specimens were thermal cycled to simulate the effects of 6 and 12 months intraorally. A 4-point bend test, using the chevron-notched beam method was done and K1C (MPa·m1/2 ) and flexure bond strength (MPa) were calculated. All specimens were analysed for the mode of failure under the light microscope and selected specimens under scanning electron microscope. Results were statistically analysed using ANOVA (SPSS Ver 24). The mean K1C was the highest for the teeth bonded to the heat-cured DBR group (1.09 ± 0.24), followed by CAD/CAM (0.43 ± 0.05) and 3D printed groups (0.17 ± 0.01). Differences were statistically significant (p < 0.01). Within each group, aging showed statistically significantly lower values but no statistical significance between the mean K1C and flexural bond strength (p = 0.36). The dominant mode of failure was cohesive in the CAD/CAM groups and adhesive in the heat-cured and 3D printed groups. Teeth bonded to heat-cured DBRs produced the highest K1C .The bond strength decreased significantly with aging. Teeth bonded to CAD/CAM and 3D printed DBRs showed significantly lower bond strength, with no significant influence of aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.