Abstract

Fiber-reinforced polymer (FRP) laminates are popular in the strengthening of concrete structures, but the durability of the strengthened structures is of great concern. Due to the susceptibility of the epoxy resin used for bonding and the deterioration of materials, the bond performance of the FRP–concrete interface could be degraded due to environmental exposure. This paper aimed to establish a data-driven method for bond strength prediction using existing test results. Therefore, a method composed of a Back Prorogation Net (BPNN) and Meta-learning Net was proposed, which can be used to solve the implicit regression problems in few-shot learning and can obtain the deteriorated bond strength and the impact weight of each parameter. First, the pretraining database Meta1, a database of material strength degradation, was established from the existing results and used in the meta-learning network. Then, the database Meta2 was built and used in the meta-learning network for model fine-tuning. Finally, combining all prior knowledge, not only the degradation of the FRP–concrete bond’s strength was predicted, but the respective weights of the environment parameters were also obtained. This method can accurately predict the degradation of the bond performance of FRP–concrete interfaces in complex environments, thus facilitating the further assessment of the remaining service life of FRP-reinforced structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.