Abstract

The suitability of repairing Portland cement concrete with geopolymer mortars is explored as a viable way to replace Portland cement in concrete repairs and reduce their carbon footprint. Bond tests are performed through non-standard slant shear tests with variable bond plane inclination to assess concrete-geopolymer shear bond strength under different combinations of normal and shear stresses at the concrete-geopolymer interface. Interfacial cohesion and friction coefficients, two inherent mechanical properties of the substrate-repair interface, are extrapolated from experimental data and compared among different types of geopolymer repairs. The adoption of different curing temperatures for the geopolymer repair mortar (20°C and 45°C) and its reinforcement with various contents of Polyvinyl Alcohol fibers (volume fractions Vf = 0%, 0.5%, and 1%) are investigated to optimize the substrate-repair bond. Mechanical tests are supported by statistical analysis and microscope observation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call