Abstract

The dissociative chemisorption of singly deuterated methane (CH3D) has been studied on the steps and terraces of a Pt(211) surface by quantum state resolved molecular beam methods. At incident translational energy (Et) below 50 kJ/mol, CH3D dissociates only on the more reactive steps of Pt(211), where both C-H and C-D cleavage products CH2D(ads) and CH3(ads) can be detected by reflection absorption infrared spectroscopy. Vibrational excitation of a slow beam of CH3D (Et = 10 kJ/mol), prepared with one quantum of antisymmetric C-H stretch excitation by infrared laser pumping, allows for fully bond- and site-selective dissociation forming exclusively CH2D(ads) on the step sites. At higher kinetic energies (Et > 30 kJ/mol), bond selective dissociation by C-H bond cleavage is observed on the terrace sites for stretch excited CH3D (ν4) while on the steps, the C-H/C-D cleavage branching ratio approaches the statistical 3/1 limit. Finally, at Et > 60 kJ/mol, both C-H and C-D cleavages are observed on both step and terrace sites of Pt(211). Our experiments show how careful control of incident translational and vibrational energy can be used for site and bond selective dissociation of methane on a catalytically active Pt surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.