Abstract

The mechanical properties of polymer glass are determined by both intermolecular local packing structures and aligned intrachain configurations. These configurations involve multiple space scales, and the underlying mechanism is not well understood yet. By applying mechanical stimulation to cold-drawn polymer glasses, the present simulation work shows a one-to-one correspondence between arising retractive stress and the segment orientation parameter on the length scale of the intrachain connecting bond. Such retractive stress is a newly produced enthalpic stress when segment orientation on the length scale of bonds and particle mobility coexist. This reveals a potential mechanism of how the intrachain orientation on the length scale of bonds influences the mechanical behaviors of polymer glasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call