Abstract

Ab initio molecular dynamics is able to predict novel reaction mechanisms by directly observing the individual reaction events that occur in simulation trajectories. In this article, we describe an approach for detecting reaction events from simulation trajectories using a physically motivated model based on time series analysis of ab initio bond orders. We found that applying a threshold to the bond order was insufficient for accurate detection, whereas peak finding on the first time derivative resulted in significantly improved accuracy. The model is trained on a reference set of reaction events representing the ideal result given unlimited computing resources. Our study includes two model systems: a heptanylium carbocation that undergoes hydride shifts and an unsaturated iron carbonyl cluster that features CO ligand migration and bridging behavior. The results indicate a high level of promise for this analysis approach to be used in mechanistic analysis of reactive AIMD simulations more generally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.