Abstract
The combined use of Fibre Reinforced Polymer (FRP) and Air-Entrained Concrete (AEC) can be an alternative to traditional steel-reinforced concrete as this system is less affected by the corrosion of the reinforcement and by the freeze-thaw cycles induced concrete degradation. However, the viability of this system hinges on the bond performance of the reinforcing bars. A total of 236 pull-out specimens were prepared and tested to study the effect of air-entraining admixtures (AEA) on the bond behaviour of FRP bars to concrete with varying compressive strengths. Failure modes and bond stress-slip curves were reported and discussed. The bond energy, calculated as the area under the bond stress-slip diagram, was also analyzed. The experimental peak bond stresses (bond strength) were compared to the theoretical ones characterized by the formula proposed for steel bars by the Model Code 2010. In addition, the statistical significance of the effect of AEA on bond characteristics was determined, yielding a reduction factor to account for the effect of AEA on bond strength. The test results show that the bond strength of FRP bars in AEC was statistically significantly lower than in normal concrete. However, the decrease is sufficiently small that could be accounted for, during the design stage, by merely increasing the reinforcement development length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.