Abstract

The high-performance feature of the Permanent Magnet Linear Synchronous Motor (PMLSM) makes it a reliable and valuable motor for use in the automotive industry, especially for electric vehicle (EVs) applications. This research proposes a bond graph approach in modeling the PMLSM as a multi-domain dynamical system. However, A time-based simulation was performed using 20-sim software to simulate the dynamical behavior of the motor. An equivalent model of the motor was first obtained and then modeled and simulated using 20-sim software. The model of the PMLSM drive system was modeled separately and incorporated with PMLSM Motor equivalent model to form a global model. Moreover, the motor drive system response was studied based on the sensor resolutions and the inverter switching frequency. The block diagram and the transfer function methods validated the bond graph model obtained. Two classical PIs such as continuous and discrete were implemented on the motor response to control the velocity of the motor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call