Abstract

Urgency of the research. The bond graphs theory aim for to formulate general class physical systems over power interactions. The factors of power are effort and flow. They have different interpretations in different physical domains. Yet, power can always be used as a generalized resource to model coupled systems residing in several energy domains. Target setting. Formalism of power graphs enables to describe different physical systems and their interactions in a uniform, algorithmizable way and transform them into state space description. This is useful when analyzing mechatronic systems transforming various forms of energy (electrical, fluid, mechanical) by means of information signals to the resulting mechanical energy. Actual scientific researches and issues analysis. Over the past two decades the theory of Bond Graphs has been paying attention to universities around the world, and bond graphs have been part of study programs at an ever-increasing number of universities. In the last decade, their industrial use is becoming increasingly important. The Bond Graphs method was introduced by Henry M. Paynter (1923-2002), a professor at MIT & UT Austin, who started publishing his works since 1959 and gradually worked out the terminology and formalism known today as Bond Graphs translated as binding graphs or performance graphs. Uninvestigated parts of general matters defining. The electrical system model is solved with the help of the above mentioned bond graphs formalism. Gradually, the theory of power graphs in the above example is explained up to the construction of state equations of the electrical system. The state equations are then solved in Matlab / Simulink. The statement of basic materials. Using bond graphs theory to simulate electrical system and verify its suitability for simulating electrical models. In various versions of the parameters of model we can monitor its behavior under different operating conditions. The language of bond graphs aspires to express general class physical systems through power interactions. The factors of power i.e., effort and flow, have different interpretations in different physical domains. Yet, power can always be used as a generalized coordinate to model coupled systems residing in several energy domains. Conclusions. We introduced a method of systematically constructing a bond graph of an electrical system model using Bond graphs. A practical example of an electrical model is given as an application of this methodology. Causal analysis also provides information about the correctness of the model. Differential equations describing the dynamics of the system in terms of system states were derived from a simple electrical system coupling graph. The results correspond to the equations obtained by the classical manual method, where first the equations for individual components are created and then a simulation scheme is derived based on them. The presented methodology uses the reverse procedure. However, manually deriving equations for more complex systems is not so simple. Bond charts prove to be a suitable means of analysis, among other systems and electrical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.