Abstract

This study sought to evaluate the influence of thermocycling and water storage on the microtensile bond strength of composite resin bonded to erbium:yttrium-aluminum-garnet (Er:YAG)-irradiated and bur-prepared enamel. Eighty bovine incisors were selected and sectioned. Specimens were ground to produce a flat enamel surface. Samples were randomly assigned according to cavity preparation device: (I) Er:YAG laser and (II) high-speed turbine, and were subsequently restored with composite resin. They were subdivided according to the duration of water storage (WS)/number of thermocycles (TCs): 24 h WS/no TCs; 7 days WS/500 TCs; 1 month WS/2,000 TCs; 6 months WS/12,000 TCs. The teeth were sectioned into 1.0 mm(2)-thick slabs and subjected to tensile stress in a universal testing machine. Data were submitted to two-way analysis of variance (ANOVA) and Tukey's test at a 0.05 significance level. The different periods of water storage and thermocycling did not influence the microtensile bond strength (microTBS) values in the Er:YAG laser-prepared groups. In bur-prepared enamel, the group submitted to 12,000 TCs/6 months' WS (IID) showed a significant decrease in bond strength values when compared to the group stored in water for 24 h and not submitted to thermocycling (IIA), but values were statistically similar to those obtained in all Er:YAG laser groups and in the bur- prepared groups degraded with 500 TCs/1 week WS (IIB) or 2,000 TCs/1 month WS (IIC). It may be concluded that adhesion of an etch-and-rinse adhesive to Er:YAG laser-irradiated enamel was not affected by the methods used to simulate degradation of the adhesive interface and was similar to adhesion in the bur-prepared groups in all periods of water storage and thermocycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.