Abstract

We developed a system to deposit H2O molecules onto ultrathin silicon nitride substrates in situ using time-resolved transmission electron diffraction apparatus and performed ultrafast time-resolved electron diffraction measurements in the noncrystalline (amorphous) H2O under near-ultraviolet photoexcitation. The observed dynamics directly represent O-H bond dissociation via multiphoton absorption and charge transfer, which trigger ionization and intermolecular disorder in the amorphous H2O. Our results illustrate the intriguing nature of light-matter and matter-matter interactions in H2O molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.