Abstract

The bond dissociation energies of CuNO(+), Cu(NO)(2)(+), and CuAr(+) are determined by means of guided ion beam mass spectrometry and quantum chemical calculations. From the experiment, the values D(0)(Cu(+)-NO) = 1.13 +/- 0.05, D(0)(ONCu(+)-NO) = 1.12 +/- 0.06, D(0)(Cu(+)-Ar) = 0.50 +/- 0.07, and D(0)(Cu(+)-Xe) = 1.02 +/- 0.06 eV are obtained. The computational approaches corroborate these results and provide additional structural data. The relative values of D(0)(Cu(+)-NO) and D(0)(Cu(+)-Xe) are consistent with the approximately thermoneutral formation of CuXe(+) upon interacting CuNO(+) with xenon. The sequential bond dissociation energies of Cu(NO)(2)(+) exhibit a trend similar to those of other Cu(I) complexes described in the literature. Although metathesis of nitric oxide to N(2) and O(2) is of considerable interest, no evidence for N-N- or O-O-bond formations in Cu(NO)(n)(+) ions (with n up to 3) is obtained within the energy range studied experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call