Abstract

The effective spin Hamiltonian that describes the magnetic properties of La${}_{2}$CuO${}_{4}$ is derived from the nearest-neighbor superexchange interactions. It is shown that the spin system of the CuO${}_{2}$ plane of the compound is frustrated; the principal axes of the symmetric parts of the one-bond anisotropy tensors are not the same for all the bonds. We also show that, due to a hidden symmetry of the one-bond anisotropic superexchange interactions, the symmetry of the lattice alone leads to the identification of the largest eigenvalue of the mean-field superexchange anisotropy tensor. The derived mean-field spin Hamiltonian is identical to that used previously on a phenomenological basis to account for the magnetic properties of La${}_{2}$CuO${}_{4}$ in the orthorhombic phase. Similar arguments explain the magnetic structure in the low-temperature tetragonal phase. These structures cannot be obtained without the inclusion of the symmetric part of the anisotropy tensor, neglected in other papers. Finally, we show how the addition of direct exchange may explain the observed spin-wave gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.