Abstract

The densification of the vitreous silica (v-SiO2) due to laser irradiation appears reasonable to cause the change in refractive index. In this letter, the v-SiO2 densification under IR femtosecond laser irradiation is studied within molecular-dynamics simulation. The single- and multi-pulse interactions are explored numerically with an account of the bond-breaking mechanism. By analyzing the network at nanoscale, the nature of v-SiO2 densification is assigned to the reduction of major ring fractions of six- and seven-membered rings to minor fractions of three- and four-membered rings (related to D2 and D1 Raman signatures, respectively). The athermal behavior of v-SiO2 densification is disclosed at different degrees of ionization for both the single- and multi-pulse cases at sub-threshold regimes. The good agreement between calculated and measured D2 defect line and Si-O-Si angle changes argues in favor of the found mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call