Abstract

The bond breaking reduction of a peroxodisulphate anion at charged conducting cylinders of nanosize (which mimic metal wires or carbon tubes) in contact with an electrolyte solution is explored in the framework of a quantum mechanical theory and DFT calculations. As example, the electronic transmission coefficients are calculated for Ag(111) surface and silver nanowires of different size. The electron transfer is considered in adiabatic limit; current–voltage curves are computed for both conducting nanocylinders and a plain metal electrode, which is chosen as a reference system. It is argued that the electrical double layer effects play a crucial role and entail a noticeable rise of current at nanowires, as compared with a plain metal electrode. A “pit” on the model current–voltage dependencies was observed to disappear starting from a certain value of the radius of a nanocylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.