Abstract

In order to evaluate the influence of freeze–thaw action on the durability of concrete structures, this paper presented an experimental study to investigate the effects of freezing–thawing cycles and concrete strength on the bond behavior between steel bars and concrete confined with stirrups. Through freeze–thaw cycles and center pullout tests, the failure mode of pullout specimen, concrete strength, mass loss, dynamic elastic modulus, and bond–slip curves were analyzed. At last, the bond–slip constitutive model was proposed for specimens with stirrup confinement under freeze–thaw action. Main test results indicate that the failure mode and shape of bond–slip curves are affected by stirrups. The bond strength hasa certain increase after 100 freeze–thaw cycles owing to the constraining force from stirrups, whereas the splitting tensile strength significantly declines. After 100 freeze–thaw cycles, the splitting tensile strength of C20 and C40 decreased by 40.8% and 46.5%, respectively. The formula was provided to calculate the bond strength of constrained concrete after freeze–thaw cycles, and the damage coefficient and other related parameters in the formula were suggested. The predicted bond–slip curves are close to the experimental results, which could provide reference for the related research of bond performance after freeze–thaw action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call