Abstract

This study focused on the interfacial bond behavior of steel-CFRP (carbon fiber-reinforced polymer) adhesion joint associations with different steel surface treatments through typical pull-off and shear tests. The specimens were fabricated based on wet layup laminating CFRP and clean/corroded steel plates. Four types of surface treatments and two kinds of pre-coating processes were investigated to optimize the interfacial bond behavior. Meanwhile, the conventional rust removal methods were also studied by clarifying the physical and chemical characteristics of steel surfaces. Test results evaluated the topography, microstructure, and surface composition of clean and corroded steel specimens, and qualitatively established their relation to bonding behaviors and failure modes. A strong correlation existed between the surface geometry properties and the tensile/shear strength, however, for clean and corroded steel surfaces their fracture mechanisms differ. Various physical property parameters of the corroded surface related to surface treatment will further affect the bond performance. The corresponding adhesion mechanisms were mathematically demonstrated based on the surface energy principle. The present experimental results provide new insights into the interfacial bond mechanism between corroded steel structures and adhesive or CFRP composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.