Abstract
Skin plays an important role in protecting the human body from the environment, dehydration, and infection. Burns, wounds, and disease cause the skin to lose its role, but tissue-engineered skin substitutes offer the opportunity to restore skin loss. Silk fibroin from Bombyx mori (SF) has proven to be an excellent wound dressing material. In this study, we aim to develop an excellent wound dressing material by introducing three-residue sequence Arg-Gly-Asp (RGD), which is the most well-known adhesion site of fibronectin, in the films of SF and the model peptide. Its usefulness as a wound dressing material was evaluated both in vitro and in vivo. First, we showed that the flexible structures of the RGD sequence are still maintained in SF with a rigid antiparallel β-sheet structure using NMR in association with excellent wound dressings of SF containing RGD. Then, in in vitro experiments, two types of normal cells derived from human skin, normal human neonatal epidermal keratinocytes and normal human neonatal dermal fibroblasts, were used to evaluate the cell adhesion. On the other hand, in in vivo experiments, the study was conducted using a rat model of a whole skin layer defect wound. The results showed that the high-functionalized SF developed here has the potential to play a significant role in the field of wound dressings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.