Abstract
Baculoviruses have been developed as long-term and environmentally friendly biopesticides. However, solar ultraviolet radiation can reduce the activity of baculovirus. Radiation sensitive 23 (Rad23) can recognize DNA damage and is involved with nucleotide excision repair (NER). In the current study, BmRad23 was accumulated mainly within the nucleus. Host cell reactivation (HCR) assays have shown that BmRad23 significantly facilitated the expression of UV-damaged mCherry reporter gene. Reverse transcription quantitative PCR (RT-qPCR) result showed that the mRNA expression level of BmRad23 was increased in (Bombyx mori nuclear polyhedrovirus, BmNPV) BmNPV-infected BmN cells. However, the expression of BmRad23 was increased significantly when BmNPV budded viruses (BVs) or BmN cells were irradiated with UV light. Overexpression of BmRad23 promoted the mRNA levels of two UV-induced DNA damage repair genes which were from Bombyx mori and BmNPV, respectively. Meanwhile, the overexpression of BmRad23 in BmN cells was conducive to the proliferation of BmNPV and UV-damaged BmNPV. The recombinant BmNPV BVs expressing BmRad23 showed stronger resistance to UV radiation than the control virus. In conclusion, the results revealed that BmRad23 contributed to the proliferation of BmNPV and the repair of UV-damaged BmNPV, which would provide a reference for the development of efficient baculovirus pesticides against UV radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.