Abstract

Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides. They play important roles in insect hemolymph sugar homeostasis, larval lipolysis, and storage-fat mobilization. Mechanistic investigations have shown that, upon AKH stimulation, adipokinetic hormone receptor (AKHR) couples to a Gs protein and enhances adenylate cyclase activity, leading to intracellular cAMP accumulation. However, the underlying molecular mechanism by which this signaling pathway connects to extracellular signal-regulated kinase 1/2 (ERK1/2) remains to be elucidated. Using HEK293 cells stably or transiently expressing AKHR, we demonstrated that activation of AKHR elicited transient phosphorylation of ERK1/2. Our investigation indicated that AKHR-mediated activation of ERK1/2 was significantly inhibited by H-89 (protein kinase A inhibitor), Go6983, and GF109203X (protein kinase C inhibitors) but not by U73122 (PLC inhibitor) or FIPI (PLD inhibitor). Moreover, AKHR-induced ERK1/2 phosphorylation was blocked by the calcium chelators EGTA and BAPTA-AM. Furthermore, ERK1/2 activation in both transiently and stably AKHR-expressing HEK293 cells was found to be sensitive to pretreatment of pertussis toxin, whereas AKHR-mediated ERK1/2 activation was insensitive to siRNA-induced knockdown of β-arrestins and to pretreatment of inhibitors of EGFR, Src, and PI3K. On the basis of our data, we propose that activated AKHR signals to ERK1/2 primarily via PKA- and calcium-involved PKC-dependent pathways. Our current study provides the first in-depth study defining the mechanisms of AKH-mediated ERK activation through the Bombyx AKHR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.