Abstract

The well-known Bombieri-A. I. Vinogradov theorem states that $$\sum\limits_{q \leqslant x^{\tfrac{1}{2}} (\log x)^{ - s} } {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{y \leqslant x} } \left| {\psi (y,q;a) - \frac{y}{{\varphi (q)}}} \right| \ll \frac{x}{{(\log x)^A }},$$ (1) whereA is an arbitrary positive constant,B=B(A)>0, and as usual, $$\psi (x,q;a) = \sum\limits_{\mathop {n \leqslant x}\limits_{n = a(q)} } {\Lambda (n),}$$ Λ being the Von Mangoldt's function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call