Abstract

Bombesin binding sites were localized in the rat urogenital system by autoradiography of 125I-Tyr 4-bombesin binding to frozen tissue sections. Saturable binding was observed in the bladder, seminal vesicle, uterus, and oviduct. In all organs, the binding sites corresponded to layers of smooth muscle. Radioligand binding studies were performed on homogenized membrane preparations from bladder, uterus, and seminal vesicle. Membrane binding was saturable, reversible, time- and temperature-dependent, and specific for bombesin and related peptides. Analysis of saturable equilibrium binding from all three organs yielded a best fit to a one-site model of high affinity binding with apparent K ds of 720 pM for bladder, 470 pM for uterus, and 700 pM for seminal vesicle. Neuromedin B was potent in displacing saturable 125I-Tyr 4-bombesin binding from bladder and seminal vesicle but not uterus membranes. In order to characterize these binding sites further, the ability of these membranes to interact with a specific bombesin receptor antagonist, [Leu 13-psi-CH 2NH-Leu 14]-bombesin, and with GTP-gamma-S was determined. [Leu 13-psi-CH 2NH-Leu 14]-bombesin was much more potent in displacing saturable 125I-Tyr 4-bombesin binding from uterus than from bladder and seminal vesicle membranes, further supporting the distinction between the uterus and the bladder/seminal vesicle binding sites as bombesin receptor subtypes. GTP-gamma-S inhibited saturable 125I-Tyr 4-bombesin binding to membranes from all three organs, indicating that both receptor subtypes are linked to GTP-binding proteins. We conclude that smooth muscle in the rat urogenital system expresses bombesin receptors and that endogenous GRP and neuromedin B may regulate some reproductive and excretory functions. The bladder and seminal vesicle express the neuromedin B-preferring subtype and the uterus expresses the bombesin/GRP-preferring subtype of bombesin receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.