Abstract

Our previous studies indicate that the activation of mitogen-activated protein kinase (MAPK) pathway is involved in bombesin-induced cell proliferation in prostate cancer cells. Cyclin D1 is a critical regulator involved in cell cycle progression through the G1 phase into the S phase, thereby contributing to cell proliferation. Mostly, mitogen-stimulated expression of cyclin D1 is attributed to the extracellular signal-regulated kinase (ERK) activation. Here, we found that bombesin induced human cyclin D1 expression on both mRNA and protein levels in DU-145 prostate cancer cells. Mutational analyses showed that bombesin-enhanced cyclin D1 transcription required the binding of nuclear proteins to the -143 to -105 region of the human cyclin D1 promoter, which contains binding sites for transcription factors Sp-1 and early growth response protein (Egr-1). Do novo protein synthesis was requisite for bombesin-induced cyclin D1 expression. Further studies showed Egr-1 was induced upon bombesin stimulation. The induction of Egr-1 expression and its binding to the cyclin D1 promoter were essential for bombesin-enhanced cyclin D1 transcription. Inhibition of MAPK pathway with either the MEK1 inhibitor PD98059 or a dominant-negative Ras mutant, RasN17, abolished bombesin-induced cyclin D1 activation. Taken together, bombesin-induced cyclin D1 expression in prostate cancer cells is mediated by Egr-1 activation and the interaction of Egr-1 with the Egr-1/Sp1 motif of the cyclin D1 promoter through the activation of MAPK pathway. These findings represent a novel mechanism of bombesin-dependent stimulation of mitogenesis by regulating directly the cell cycle in prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call