Abstract
AbstractThe Boltzmann transport equation (BTE) had been successfully used to predict phonon transport in semiconductors including silicon and germanium. However, in a composite system, the method requires external inputs to include accurate boundary conditions at internal interfaces. The atomistic Green's function (AGF) method is particularly useful for addressing interfacial heat transfer problems. In this paper, phonon transmission functions derived using the AGF method are incorporated in a non-gray BTE calculation of phonon transport in a relaxation time approximation. A Landauer-type heat flux is computed at the interface using the transmission function and the lattice temperatures on either side of the interface to compute distribution functions. The formulation is applied to a Si/Ge interface and the dependence of the effective thermal conductivity of the composite medium is investigated as a function of domain length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.