Abstract

Non-gaussianity and B-mode polarization are particularly interesting features of the cosmic microwave background, as -- at least in the standard model of cosmology -- their only sources to first order in cosmological perturbation theory are primordial, possibly generated during inflation. If the primordial sources are small, the question arises how large is the non-gaussianity and B-mode background induced in second-order from the initially gaussian and scalar perturbations. In this paper we derive the Boltzmann hierarchy for the microwave background photon phase-space distributions at second order in cosmological perturbation theory including the complete polarization information, providing the basis for further numerical studies. As an aside we note that the second-order collision term contains new sources of B-mode polarization and that no polarization persists in the tight-coupling limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call