Abstract

HSV type 1 (HSV-1) is a prevalent human pathogen that infects >3.72 billion individuals worldwide and can cause potentially blinding recurrent corneal herpetic disease. HSV-1 establishes latency within sensory neurons of trigeminal ganglia (TG), and TG-resident CD8+ T cells play a critical role in preventing its reactivation. The repertoire, phenotype, and function of protective CD8+ T cells are unknown. Bolstering the apparent feeble numbers of CD8+ T cells in TG remains a challenge for immunotherapeutic strategies. In this study, a comprehensive panel of 467 HLA-A*0201-restricted CD8+ T cell epitopes was predicted from the entire HSV-1 genome. CD8+ T cell responses to these genome-wide epitopes were compared in HSV-1-seropositive symptomatic individuals (with a history of numerous episodes of recurrent herpetic disease) and asymptomatic (ASYMP) individuals (who are infected but never experienced any recurrent herpetic disease). Frequent polyfunctional HSV-specific IFN-γ+CD107a/b+CD44highCD62LlowCD8+ effector memory T cells were detected in ASYMP individuals and were primarily directed against three "ASYMP" epitopes. In contrast, symptomatic individuals have more monofunctional CD44highCD62LhighCD8+ central memory T cells. Furthermore, therapeutic immunization with an innovative prime/pull vaccine, based on priming with multiple ASYMP epitopes (prime) and neurotropic TG delivery of the T cell-attracting chemokine CXCL10 (pull), boosted the number and function of CD44highCD62LlowCD8+ effector memory T cells and CD103highCD8+ tissue-resident T cells in TG of latently infected HLA-A*0201-transgenic mice and reduced recurrent ocular herpes following UV-B-induced reactivation. These findings have profound implications in the development of T cell-based immunotherapeutic strategies to treat blinding recurrent herpes infection and disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call