Abstract

AbstractAsteroid 2008 TC3 impacted the Earth's atmosphere with a known shape and orientation. Over 600 meteorites were recovered at recorded locations, including meteorites of nonureilite type. From where in the asteroid did these stones originate? Here, we reconstruct the meteor lightcurve and study the breakup dynamics of asteroid 2008 TC3 in 3‐D hydrodynamic modeling. Two fragmentation regimes are found that explain the lightcurve and strewn field. As long as the asteroid created a wake vacuum, the fragments tended to move into that shadow, where they mixed with small relative velocities and surviving meteorites fell along a narrow strip on the ground. But when the surviving part of the backside and bottom of the asteroid finally collapsed at 33 km altitude, it created an end flare and dust cloud, while fragments were dispersed radially with much higher relative speed due to shock–shock interactions with a distorted shock front. Stones that originated in this final collapse tended to survive in a larger size and fell over a wider area at locations on the ground. Those locations to some extent still trace back to the fragment's original position in the asteroid. We classified the stones from this “large mass” area and used this information to glean some insight into the relative location of recovered ureilites and ordinary and enstatite chondrites in 2008 TC3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.