Abstract

Electrical stimulation of the rat paw is commonly used to study the hemodynamic, metabolic and neuronal mechanisms of functional MRI (fMRI) responses in somatosensory cortex. Several groups have reported good correlation between the blood oxygenation level-dependent (BOLD) fMRI signal and somatosensory evoked potentials (SEPs) using short, typically 300 μs, square stimulation pulses. The spectral power of these short pulses is evenly distributed over a wide range of frequencies and thus the effects of the frequency content of the stimulation pulse on fMRI responses have not been previously described. Here, the effects that different stimulation pulse waveforms with a range of frequency content have on neuronal activity, as measured by SEPs, and on the amplitude of the BOLD fMRI signal in rat somatosensory cortex are investigated. The peak-to-peak SEP amplitudes increased as the power in the high frequency harmonics of the different pulse waveforms increased, using either triangular or sinusoidal stimuli waveforms from 9 Hz to 180 Hz. Similarly, BOLD fMRI response increased with increased high frequency content of the stimulation pulse. There was a linear correlation between SEPs and BOLD fMRI over the full range of frequency content in the stimulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call