Abstract

To learn how to utilize the exhaust heat from a high-temperature gas product of a methanol reformer, the present study experimentally investigates the boiling two-phase flow in co- and counter-current microchannel heat exchangers (MCHE) with gas heating. Boiling two-phase flow patterns, two-phase flow instability, and efficiency are explored. The working fluid on the hot and cold sides are helium and liquid methanol, respectively. The silicon-based MCHE, which has dimensions of 20mm×20mm, is designed with 18 parallel microchannels on both sides and is prepared using microfabrication processes. Four types of two-phase flow patterns – bubbly-elongated slug flow, annular flow, annular flow with liquid film breakup, and dryout are identified in both types of MCHE that are studied. A flow pattern map is then constructed on the plane of the methanol mass flux versus heat flux for both types of MCHE. In the counter-current MCHE, the efficiency increases significantly with an increase in the mass flux in both the single- and two-phase flow regions, while the effect of mass flux is insignificant in the co-current MCHE. In the two-phase flow region, the efficiency of both types of MCHEs gradually increases with an increase in the hot-side thermal power until the CHF is approached. The highest efficiency obtained in the present study is about 0.85 and 0.90 for the co- and counter-current MCHEs, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.