Abstract
The effect of ambient pressure on the dynamics of bubble formation in liquid heated rapidly to the limit of superheat is investigated by heating a fine film heater immersed in ethyl alcohol at a high rate of temperature rise up to 20×106K / s. The heater surface temperature at boiling incipience increases with the increase of the rate of temperature rise and saturates at the rate higher than about 5×106K / s. The saturated temperature agrees well with that of homogeneous nucleation in an ambient pressure range from 0.1 to 2.0 MPa. The nucleated bubbles become smaller to coalesce with the increase of ambient pressure and the measured number density of them reaches 7.0×1010l / m2 for the maximum. The increase of the number density versus the surface temperature agrees qualitatively with that predicted by the fluctuation nucleation theory. As the result, the bubble formation observed at a higher rate of temperature rise is concluded to be due to fluctuation nucleation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.