Abstract

We combine, within the Bohr Sommerfeld quantization rule, a systematic perturbation with asymptotic analysis of the action integral for potentials which support a finite number of bound states with E < 0 to obtain an interpolation formula for the energy eigenvalues. We find interpolation formulae for the Morse potential as well as potentials of the form $${V=V_0 \left[ {\left( {\frac{a}{x}} \right)^{2k}-\left( {\frac{a}{x}}\right)^{k}} \right]}$$ . For k = 6 i.e. the well known Lennard Jones potential this yields results within 1 per cent of the highly accurate numerical values. For the Morse potential this procedure yields the exact answer. We find that the result for the Morse potential which approaches zero exponentially is the $${k\rightarrow\infty}$$ limit of the Lennard Jones class of potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.