Abstract

An analysis of applying the property of speed instantaneity to electronic transitions (i.e., transitions of the atomic electron that are not instantaneous), instead of quantum jumps (i.e., instantaneous transitions), during a complete oscillation for the process of Bohr’s model of the atom absorbing and emitting electromagnetic radiation (i.e., photon) reveals a discontinuity that is conserved as an emitted electromagnetic radiation (i.e., photon) discontinuity. The frequency of the oscillations of the atomic electron (i.e., electric charge) and induced magnetic field for the transitions of the atomic electron (i.e., electric charge) during the complete oscillation for the absorption and emission process (of Bohr’s atomic model) is conserved as the frequency of the oscillating electric and magnetic fields of the emitted electromagnetic radiation (i.e., photon). The conserved frequency and discontinuity (based on speed instantaneity and electronic transitions that are not instantaneous) of the atomic absorption and emission process (of Bohr’s atomic model) lead to predicting the need for Planck’s constant (i.e., quantum of action) without the use of probability. Planck claimed the interpretation of reality must change if his method of deriving the radiation law stood on a physical concept. Einstein, whom Planck credited as the first to make an advancement in the quantum field, unknowingly introduced a quantized two-dimensional discontinuum geometry that is one of the foundations on which a table of five realities used in physics was developed for making predictions. Using the table of realities, locality is redefined, and entanglement is demystified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call