Abstract

BackgroundBogs are unique ecosystems inhabited by distinctive, coevolved assemblages of organisms, which play a global role for carbon storage, climate stability, water quality and biodiversity. To understand ecology and plant–microbe co-occurrence in bogs, we selected 12 representative species of bryophytes and vascular plants and subjected them to a shotgun metagenomic sequencing approach. We explored specific plant–microbe associations as well as functional implications of the respective communities on their host plants and the bog ecosystem.ResultsMicrobial communities were shown to be functionally adapted to their plant hosts; a higher colonization specificity was found for vascular plants. Bryophytes that commonly constitute the predominant Sphagnum layer in bogs were characterized by a higher bacterial richness and diversity. Each plant group showed an enrichment of distinct phylogenetic and functional bacterial lineages. Detailed analyses of the metabolic potential of 28 metagenome-assembled genomes (MAGs) supported the observed functional specification of prevalent bacteria. We found that novel lineages of Betaproteobacteria and Actinobacteria in the bog environment harboured genes required for carbon fixation via RuBisCo. Interestingly, several of the highly abundant bacteria in both plant types harboured pathogenicity potential and carried similar virulence factors as found with corresponding human pathogens.ConclusionsThe unexpectedly high specificity of the plant microbiota reflects intimate plant–microbe interactions and coevolution in bog environments. We assume that the detected pathogenicity factors might be involved in coevolution processes, but the finding also reinforces the role of the natural plant microbiota as a potential reservoir for human pathogens. Overall, the study demonstrates how plant–microbe assemblages can ensure stability, functioning and ecosystem health in bogs. It also highlights the role of bog ecosystems as a playground for plant–microbe coevolution.CSBTkEkudLxGFKgcLKq6BMVideo abstract

Highlights

  • Bog ecosystems are one of the oldest vegetation forms in the world; they play a central role in the global carbon cycle and storage as well as a source for fresh water [1,2,3]

  • Alpha diversity analysis indicated that plant types significantly affected bacterial richness and community structure (Fig. 1a)

  • At higher taxonomic levels, the bacterial community composition was relatively similar between bryophytes and vascular plants (R2 = 0.175, P = 0.140; R2 = 0.130, P = 0.124; Figure S2a & b)

Read more

Summary

Introduction

Bog ecosystems are one of the oldest vegetation forms in the world; they play a central role in the global carbon cycle and storage as well as a source for fresh water [1,2,3]. This widespread ecosystem is commonly dominated by Sphagnum mosses due to their unique biochemical and morphological adaptation to acidic, water-saturated and nutrient-poor environments [4]. Interactions between Sphagnum mosses and the other plants are important for the formation of the hummock topology and nutrient cycling, which facilitates their growth in the bog ecosystem [5, 7]. We explored specific plant–microbe associations as well as functional implications of the respective communities on their host plants and the bog ecosystem

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.