Abstract

The abundance of gut microbiota can be viewed as a quantitative trait, which is affected by the genetics and environment of the host. To quantify the effects of host genetics, we calculated the heritability of abundance of specific microorganisms and genetic correlations among them in the gut microbiota of two lines of chickens maintained under the same husbandry and dietary regimes. The lines, which originated from a common founder population, had undergone >50 generations of selection for high (HW) or low (LW) 56-day body weight and now differ by more than 10-fold in body weight at selection age. We identified families of Paenibacillaceae, Streptococcaceae, Helicobacteraceae, and Burkholderiaceae that had moderate heritabilities. Although there were no obvious phenotypic correlations among gut microbiota, significant genetic correlations were observed. Moreover, the effects were modified by genetic selection for body weight, which altered the quantitative genetic background of the host. Heritabilities for Bacillaceae, Flavobacteriaceae, Helicobacteraceae, Comamonadaceae, Enterococcaceae, and Streptococcaceae were moderate in LW line and little to zero in the HW line. These results suggest that loci associated with these microbiota families, while exhibiting genetic variation in LW, have been fixed in HW line. Also, long term selection for body weight has altered the genetic correlations among gut microbiota. No microbiota families had significant heritabilities in both the LW and HW lines suggesting that the presence and/or absence of a particular microbiota family either has a strong growth promoting or inhibiting effect, but not both. These results demonstrate that the quantitative genetics of the host have considerable influence on the gut microbiota.

Highlights

  • High levels of diversity, community structure, and composition of gut microbiota are strongly associated with host species and are very stable and consistent within host species [1,2], reflecting selection of microorganisms by their host and environmental factors

  • We treated the abundance of microorganisms of gut microbiota as a quantitative trait of the host by calculating the heritabilities of abundance of specific microorganisms and quantifying diversity and composition of community structure of the gut microbiome based on the host’s quantitative genetic background

  • The heritability of a quantitative trait estimates the fraction of the phenotypic variation attributed to genetic variation

Read more

Summary

Introduction

Community structure, and composition of gut microbiota are strongly associated with host species and are very stable and consistent within host species [1,2], reflecting selection of microorganisms by their host and environmental factors. QTL mapping revealed 13 loci affecting growth in these two lines, each locus explained only a small additive effect for this large phenotypic difference [14] This moderate F, along with QTL results, suggest that there is genetic diversity within each line, and the magnitude of the body weight difference between them at selection age is because of an accumulation of quantitative genes, each with very small effects rather than a single gene mutation. Do these lines provide an ideal model for studying quantitative genetic effects of the host on the microbiome of the gut, they help us characterize how selection pressures on the host alter its genetic impact on the gut microbiota. Genetic correlations were calculated among different microorganisms as they allow for quantifying the contribution from the host’s genetic background to the interaction among the different microorganisms

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.